This information must also be included, where applicable, in any reporting requirements required for compliance with the leak repair and retrofit requirements for industrial process refrigeration equipment, as set forth in paragraphs (n) and (o) of this section. - (q) Owners or operators choosing to determine the full charge as defined in §82.152 of an affected appliance by using an established range or using that methodology in combination with other methods for determining the full charge as defined in §82.152 must maintain the following information: - (1) The identification of the owner or operator of the appliance; - (2) The location of the appliance; - (3) The original range for the full charge of the appliance, its midpoint, and how the range was determined; - (4) Any and all revisions of the full charge range and how they were determined; and - (5) The dates such revisions occurred. [58 FR 28712, May 14, 1993, as amended at 59 FR 42957, Aug. 19, 1994; 60 FR 40443, Aug. 8, 1995; 69 FR 11981, Mar. 12, 2004; 70 FR 1992, Jan. 11, 2005] # §82.169 Suspension and revocation procedures. - (a) Failure to abide by any of the provisions of this subpart may result in the revocation or suspension of the approval to certify technicians (under §82.161), approval to act as a recovery/ recycling equipment testing organization (under §82.160), or reclaimer certification (under §82.164), hereafter referred to as the "organization." In such cases, the Administrator or her or his designated representative shall give notice of an impending suspension to the person or organization setting forth the facts or conduct that provide the basis for the revocation or suspension. - (b) Any organization that has received notice of an impending suspension or revocation may choose to request a hearing and must file that request in writing within 30 days of the date of the Agency's notice at the address listed in §82.160 and shall set forth their objections to the revocation or suspension and data to support the objections. - (c) If the Agency does not receive a written request for a hearing within 30 days of the date of the Agency's notice, the revocation will become effective upon the date specified in the notice of an impending suspension. - (d) If after review of the request and supporting data, the Administrator or her or his designated representative finds that the request raises a substantial factual issue, she or he shall provide the organization with a hearing. - (e) After granting a request for a hearing the Administrator or her or his designated representative shall designate a Presiding Officer for the hearing. - (f) The hearing shall be held as soon as practicable at a time and place determined by the Administrator, the designated representative, or the Presiding Officer. - (g) The Administrator or her or his designated representative may, at his or her discretion, direct that all argument and presentation of evidence be concluded within a specified period established by the Administrator or her or his designated representative. Said period may be no less than 30 days from the date that the first written offer of a hearing is made to the applicant. To expedite proceedings, the Administrator or her or his designated representative may direct that the decision of the Presiding Officer (who need not be the Administrator) shall be the final EPA decision. - (h) Upon appointment pursuant to paragraph (e) of this section, the Presiding Officer will establish a hearing file. The file shall consist of the following: - (1) The notice issued by the Administrator under §82.169(a); - (2) the request for a hearing and the supporting data submitted therewith; - (3) all documents relating to the request for certification and all documents submitted therewith; and - (4) correspondence and other data material to the hearing. - (i) The hearing file will be available for inspection by the petitioner at the office of the Presiding Officer. - (j) An applicant may appear in person or may be represented by counsel or by any other duly authorized representative. ### Pt. 82, Subpt. F, App. A - (k) The Presiding Officer, upon the request of any party or at his or her discretion, may arrange for a pre-hearing conference at a time and place he or she specifies. Such pre-hearing conferences will consider the following: - (1) Simplification of the issues; - (2) Stipulations, admissions of fact, and the introduction of documents; - (3) Limitation of the number of expert witnesses; - (4) Possibility of agreement disposing of any or all of the issues in dispute; and - (5) Such other matters as may aid in the disposition of the hearing, including such additional tests as may be agreed upon by the parties. - (1) The results of the conference shall be reduced to writing by the Presiding Officer and made part of the record. - (m) Hearings shall be conducted by the Presiding Officer in an informal but orderly and expeditious manner. The parties may offer oral or written evidence, subject to the exclusion by the Presiding Officer of irrelevant, immaterial, and repetitious evidence. - (n) Witnesses will not be required to testify under oath. However, the Presiding Officer shall call to the attention of witnesses that their statements may be subject to the provisions of 18 U.S.C. 1001, which imposes penalties for knowingly making false statements or representations or using false documents in any matter within the jurisdiction of any department or agency of the United States. - (o) Any witness may be examined or cross-examined by the Presiding Officer, the parties, or their representatives. - (p) Hearings shall be reported verbatim. Copies of transcripts of proceedings may be purchased by the petitioner from the reporter. - (q) All written statements, charts, tabulations, and similar data offered in evidence at the hearings shall, upon a showing satisfactory to the Presiding Officer of their authenticity, relevancy, and materiality, be received in evidence and shall constitute a part of the record. - (r) Oral argument may be permitted at the discretion of the Presiding Officer and shall be reported as part of the record unless otherwise ordered by the Presiding Officer. - (s) The Presiding Officer shall make an initial decision that shall include written findings and conclusions and the reasons or basis regarding all the material issues of fact, law, or discretion presented on the record. The findings, conclusions, and written decision shall be provided to the parties and made a part of the record. The initial decision shall become the decision of the Administrator without further proceedings, unless there is an appeal to the Administrator or motion for review by the Administrator within 20 days of the date the initial decision was filed. - (t) On appeal from or review of the initial decision, the Administrator or her or his designated representative shall have all the powers which he or she would have in making the initial decision, including the discretion to require or allow briefs, oral argument, the taking of additional evidence, or a remand to the Presiding Officer for additional proceedings. The decision by the Administrator or her or his designated representative shall include written findings and conclusions and the reasons or basis therefore on all the material issues of fact, law, or discretion presented on the appeal or considered in the review. [68 FR 43809, July 24, 2003] APPENDIX A TO SUBPART F OF PART 82— SPECIFICATIONS FOR FLUOROCARBON AND OTHER REFRIGERANTS This appendix is based on the Air-Conditioning and Refrigeration Institute Standard 700–1995. ### Section 1. Purpose - 1.1 Purpose. The purpose of this standard is to evaluate and accept/reject refrigerants regardless of source (i.e., new, reclaimed and/or repackaged) for use in new and existing refrigeration and air-conditioning products as required under 40 CFR part 82. - 1.1.1 Intent. This standard is intended for the guidance of the industry including manufacturers, refrigerant reclaimers, repackagers, distributors, installers, servicemen, contractors and for consumers. - 1.1.2 Review and Amendment. This standard is subject to review and amendment as the technology advances. #### Section 2. Scope 2.1 Scope. This standard specifies acceptable levels of contaminants (purity requirements) for various fluorocarbon and other refrigerants regardless of source and lists acceptable test methods. These refrigerants are R-113; R-123; R-11; R-114; R-124; R-12; R-401C; R-406A; R-500; R-401A; R-409A; R-401B; R-411A; R-22; R-411B; R-502; R-402B; R-408A; R-402A; R-13; R-503 as referenced in the ANSI/ ASHRAE Standard 34-1992. (American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc., Standard 34-1992). Copies may be obtained from ASHRAE Publications Sales, 1791 Tullie Circle, NE, Atlanta, GA 30329. Copies may also be inspected at Environmental Protection Agency; Office of Air and Radiation Docket; 1301 Constitution Ave., NW., Room B108; Washington, DC 20460. #### Section 3. Definitions - 3.1 "Shall," "Should," "Recommended," or "It Is Recommended." "Shall," "should," "recommended," or "it is recommended" shall be interpreted as follows: - 3.1.1 Shall. Where "shall" or "shall not" is used for a provision specified, that provision is mandatory if compliance with the appendix is claimed. - 3.1.2 Should, Recommended, or It is Recommended. "Should", "recommended", or "it is recommended" is used to indicate provisions which are not mandatory but which are desirable as good practice. #### Section 4. Characterization of Refrigerants and Contaminants - 4.1 Characterization. Characterization of refrigerants and contaminants addressed are listed in the following general classifica- - 4.1.1 Characterization - a. Gas Chromatography - b. Boiling point and boiling point range - 4.1.2 Contaminants - a. Water - b. Chloride - c. Acidity - d. High boiling residue e. Particulates/solids - f.
Non-condensables - g. Impurities including other refrigerants Section 5. Sampling, Summary of Test Methods and Maximum Permissible Contaminant Levels 5.1 Referee Test. The referee test methods for the various contaminants are summarized in the following paragraphs. Detailed test procedures are included in Appendix C to ARI Standard 700-1995: Analytical Procedures for ARI Standard 700-1995, 1995, Air-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference. [This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the Air-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Arlington, Virginia 22203. Copies may also be inspected at Public Docket No. A-92-01, Environmental Protection Agency, 1301 Constitution Ave., NW., Washington, DC, 20460 or at the Office of the Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, DC.] If alternative test methods are employed, the user must be able to demonstrate that they produce results equivalent to the specified referee method. - 5.2 Refrigerant Sampling - 5.2.1 Sampling Precautions. Special precautions should be taken to assure that representative samples are obtained for analysis. Sampling shall be done by trained laboratory personnel following accepted sampling and safety procedures. - 5.2.2 Gas Phase Sample. A gas phase sample shall be obtained for determining the noncondensables. Since non-condensable gases, if present, will concentrate in the vapor phase of the refrigerant, care must be exercised to eliminate introduction of air during the sample transfer. Purging is not an acceptable procedure for a gas phase sample since it may introduce a foreign product. Since R-11, R-113, and R-123 have normal boiling points at or above room temperature, non-condensable determination is not required for these refrigerants. - 5.2.2.1 Connection. The sample cylinder shall be connected to an evacuated gas sampling bulb by means of a manifold. The manifold should have a valve arrangement that facilitates evacuation of all connecting tubing leading to the sampling bulb. - 5.2.2.2 Equalizing Pressures. manifold has been evacuated, close the valve to the pump and open the valve on the system. Allow the pressure to equilibrate and close valves. - 5.2.3 Liquid Phase Sample. A liquid phase sample is required for all tests listed in this standard the test except for condensables. - 5.2.3.1 Preparation. Place a clean, empty sample cylinder with the valve open in an oven at 110 °C (230 °F) for one hour. Remove it from the oven while hot, immediately connect to an evacuation system and evacuate to less than 1 mm mercury (1000 microns). Close the valve and allow it to cool. Weigh the empty cylinder. - 5.2.3.2 Manifolding. The valve and lines from the unit to be sampled shall be clean and dry. The cylinder shall be connected to an evacuated gas sampling cylinder by means of a manifold. The manifold should have a valve arrangement that facilitates evacuation of all connecting tubing leading to the sampling cylinder. - 5.2.3.3 Liquid Sampling. After the manifold has been evacuated, close the valve to the ### Pt. 82, Subpt. F, App. A pump and open the valve on the system. Take the sample as a liquid by chilling the sample cylinder slightly. Accurate analysis requires that the sample container be filled to at least 60% by volume, however under no circumstances should the cylinder be filled to more than 80% by volume. This can be accomplished by weighing the empty cylinder and then the cylinder with refrigerant. When the desired amount of refrigerant has been collected, close the valve(s) and disconnect the sample cylinder immediately. 5.2.3.4 Record Weight. Check the sample cylinder for leaks and record the gross weight. 5.3 Refrigerant Characterization. 5.3.1 Primary Method. The primary method shall be gas chromatography (GC) as described in Appendix C to ARI Standard 700–1995. The chromatogram of the sample shall be compared to known standards. 5.3.2 Alternative Method. Determination of the boiling point and boiling point range is an acceptable alternative test method which can be used to characterize refrigerants. The test method shall be that described in the Federal Specification for "Fluorocarbon Refrigerants," BB-F-1421 B, dated March 5, 1982, section 4.4.3. 5.3.3 Required Values. The required values for boiling point and boiling point range are given in Table 1A, Physical Properties of Single Component Refrigerants; Table 1B, Physical Properties of Zeotropic Blends (400 Series Refrigerants); and Table 1C, Physical Properties of Azeotropic Blends (500 Series Refrigerants). 5.4 Water Content. 5.4.1 Method. The Coulometric Karl Fischer Titration shall be the primary test method for determining the water content of refrigerants. This method is described in Appendix C to ARI Standard 700-1995. This method can be used for refrigerants that are either a liquid or a gas at room temperature, including refrigerants 11, 113, and 123. For all refrigerants, the sample for water analysis shall be taken from the liquid phase of the container to be tested. Proper operation of the analytical method requires special equipment and an experienced operator. The precision of the results is excellent if proper sampling and handling procedures are followed. Refrigerants containing a colored dye can be successfully analyzed for water using this method. 5.4.2 *Limits*. The value for water content shall be expressed as parts per million (ppm) by weight and shall not exceed the maximum specified (*see* Tables 1A, 1B, and 1C). 5.5 Chloride. The refrigerant shall be tested for chloride as an indication of the presence of hydrochloric acid and/or metal chlorides. The recommended procedure is intended for use with new or reclaimed refrigerants. Significant amounts of oil may interfere with the results by indicating a failure in the absence of chloride. 5.5.1 Method. The test method shall be that described in Appendix C to ARI Standard 700–1995. The test will show noticeable turbidity at chloride levels of about 3 ppm by weight or higher. 5.5.2 Turbidity. The results of the test shall not exhibit any sign of turbidity. Report the results as "pass" or "fail." 5.6 Acidity. 5.6.1 Method. The acidity test uses the titration principle to detect any compound that is highly soluble in water and ionizes as an acid. The test method shall be that described in Appendix C to ARI Standard 700–1995. This test may not be suitable for determination of high molecular weight organic acids; however these acids will be found in the high boiling residue test outlined in 5.7. The test requires a 100 to 120 gram sample and has a detection limit of 0.1 ppm by weight calculated as HCl. 5.6.2 *Limits*. The maximum permissible acidity is 1 ppm by weight as HCl. 5.7 High Boiling Residue. 5.7.1 Method. High boiling residue shall be determined by measuring the residue of a standard volume of refrigerant after evaporation. The refrigerant sample shall be evaporated at room temperature or at a temperature 45 °C (115 °F) for all refrigerants, except R–113 which shall be evaporated at 60 °C (140 °F), using a Goetz bulb as specified in Appendix C to ARI Standard 700–1995. Oils and/or organic acids will be captured by this method. 5.7.2 Limits. The value for high boiling residue shall be expressed as a percentage by volume and shall not exceed the maximum percent specified (see Tables 1A, 1B, and 1C). An alternative gravimetric method is described in Appendix C to ARI Standard 700-1995. $5.8\,$ Method of Tests for Particulates and Solids. 5.8.1 Method. A measured amount of sample is evaporated from a Goetz bulb under controlled temperature conditions. The particulates/solids shall be determined by visual examination of the Goetz bulb prior to the evaporation of refrigerant. Presence of dirt, rust or other particulate contamination is reported as "fail." For details of this test method, refer to Part 3 of Appendix C to ARI Standard 700–1995. 5.9 Non-Condensables. 5.9.1 Sample. A vapor phase sample shall be used for determination of noncondensables. Non-condensable gases consist primarily of air accumulated in the vapor phase of refrigerants. The solubility of air in the refrigerants liquid phase is extremely low and air is not significant as a liquid phase contaminant. The presence of non-condensable gases may reflect poor quality control in transferring refrigerants to storage tanks and cylinders. ### Pt. 82, Subpt. F, App. A ### **Environmental Protection Agency** - 5.9.2 Method. The test method shall be gas chromatography with a thermal conductivity detector as described in Appendix C to ARI Standard 700–1995. - 5.9.3 *Limit*. The maximum level of noncondensables in the vapor phase of a refrigerant in a container shall not exceed 1.5% by volume (*see* Tables 1A, 1B, and 1C). - 5.10 Impurities, including Other Refrigerants. - 5.10.1 Method. The amount of other impurities including other refrigerants in the subject refrigerant shall be determined by gas chromatography as described in Appendix C to ARI Standard 700–1995. 5.10.2 *Limit*. The subject refrigerant shall not contain more than 0.5% by weight of impurities including other refrigerants (*see* Tables 1A, 1B, and 1C). ### Section 6. Reporting Procedure 6.1 Reporting Procedure. The source (manufacturer, reclaimer or repackager) of the packaged refrigerant shall be identified. The refrigerant shall be identified by its accepted refrigerant number and/or its chemical name. Maximum permissible levels of contaminants are shown in Tables 1A, 1B, and 1C. Test results shall be tabulated in a like manner. ### 40 CFR Ch. I (7-1-07 Edition) # Pt. 82, Subpt. F, App. A | Te | Table 1A. Physical Properties of Single Component Refrigerants | ical Prope | erties of | Single (| Sombone | nt Refric | lerants | | | |
--|--|----------------------------------|-----------|----------|---------|-----------|----------------|-----------------|----------------|------------------| | | REPORTING
UNITS | REFEREN
CE
(SUBCLA
USE) | R-11 | R-12 | R-13 | R-22 | R-113 | R-114 | R-123 | R-124 | | CHARACTERISTICS: | | | | | | | | | | | | BOILING POINT | ·F · 1.00 ATM | ł | 74.9 | -21.6 | -114.6 | -41.4 | 117.6 | 38.8 | 82.6 | 12.2 | | | ·C · 1.00 ATM | 1 | 23.8 | -29.8 | -81.4 | -40.8 | 47.6 | 3.8 | 27.9 | -110 | | BOILING POINT RANGE | Х | 1 | 0.3 | 0.3 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | TYPICAL ISOMER CONTENT | BY WEIGHT | l | | | | | 0-1%
R-113A | 0-30%
R-114A | 0-8%
R-123A | . 0-5%
R-124A | | VAPOR PHASE
CONTAMINANTS: | - | | | | | | | | | | | AIR AND OTHER NON-
CONDENSABLES | % BY
VOLUME ·
25.C | 5.9 | N/A² | 1.5 | 1.5 | 1.5 | N/A² | 1.5 | N/A² | 1.5 | | LIQUID PHASE
CONTAMINANTS: | | | | | | | | | | | | WATER | PPM BY
Weight | 5.4 | 20 | 10 | 10 | 10 | 20 | 10 | 20 | 10 | | ALL OTHER IMPURITIES
INCLUDING REFRIGERANTS | % BY
Weight | 5.1 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | | HIGH BOILING RESIDUE | % BY
Volume | 5.7 | 0.01 | 0.01 | 0.05 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | | PARTICULATES/SOLIDS | VISUALLY
CLEAN TO
PASS | 5.8 | PASS | ACIDITY | PPM BY
WEIGHT | 5.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | CHLORIDES ³ | NO VISIBLE
Turbidity | 5.5 | PASS | PASS | PASS | PASS | PASS | . PASS | PASS | PASS | Pt. 82, Subpt. F, App. A | F | able 1B. Pr | ysical Pro | operties of Zeotro | pic Blends (400 § | Table 1B. Physical Properties of Zeotropic Blends (400 Series Refrigerants) | (5) | | |--|------------------------------|----------------------------------|---------------------|--------------------|---|----------------|---------------------| | | REPORTIN
G UNITS | REFERE
NCE
(SUBCLA
USE) | R-401A | R-401B | R-402A | R-402B | R-406A ³ | | CHARACTERISTICS: | | | | | | | | | REFRIGERANT COMPONENTS | | | R-22/152A/124 | R-22/152A/124 | R-125/290/22 | R-125/290/22 | R-22/600A/142B | | NOMINAL COMP, WEIGHT% | | | 53/13/34 | 61/11/28 | 60/2/38 | 38/2/60 | 55/4/41 | | ALLOWABLE COMP, WEIGHT% | | | 51-54/11.5-13.5/33- | 59-63/9.5-11.5/27- | 58-62/1-3/
36-40 | 36-40/1-3/ | 53-57/3-5/ | | BOILING POINT 1 | ·F·1.00 | ł, | -27.7 TO -18.1 | -30.4 TO -21.2 | -54.8 TO -53.9 | -53.3 TO -49.0 | -32.7 TO -15.0 | | | C·1.00 | *** | -33.2 TO -27.8 | -34.7 TO -29.6 | -48.2 TO -47.7 | -47.4 TO -45.0 | -36.0 TO -26.1 | | BOILING POINT RANGE 1 | К | | 5.4 | 5.1 | 0.5 | 2.4 | 6.6 | | VAPOR PHASE
CONTAMINANTS: | | | | | | | Ì | | AIR AND OTHER NON-
CONDENSABLES | % BY
VOLUME
25·C | 5.9 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | LIQUID PHASE
CONTAMINANTS: | | | | | | | | | WATER | PPM BY
WEIGHT | 5.4 | 10 | 10 | 10 | 10 | 10 | | ALL OTHER IMPURITIES
INCLUDING REFRIGERANTS | % BY
Weight | 5.1 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | | HIGH BOILING RESIDUE | % BY
Volume | 5.7 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | | PARTICULATES/SOLIDS | VISUALLY
CLEAN TO
PASS | 5.8 | PASS | PASS | PASS | PASS | PASS | | ACIDITY | PPM BY
Weight | 5.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ### 40 CFR Ch. I (7-1-07 Edition) # Pt. 82, Subpt. F, App. A | Table 1B (| Table 1B (continued). Physical Properties of Zeotropic Blends (400 Series Refringerants) | Physica | Propertie | s of Zeotro | ppic Blend | s (400 Se | ries Refric | lerants) | | |---|--|----------------------------------|-----------------------|---------------------|--------------------------------|--------------------|--------------------|----------------------------|---------------------| | | REPORTIN
G UNITS | REFERE
NCE
(SUBCLA
USE) | R-407C | R-408A | R-409A | R-410A | R-410B | R-411A ³ | R-411B ³ | | CHARACTERISTICS: | | | | | | | | | | | REFRIGERANT
COMPONENTS | | | R-
32/125/134A | R125/143A/
22 | R125/143A/ R22/124/14
22 2B | R32/125 | R32/125 | R1270/22/152A R1270/22/152 | R1270/22/152
A | | NOMINAL COMP, WEIGHT% | | | 23/25/52 | 7/46/47 | 60/25/15 | 20/20 | 45/55 | 1.5/87.5/11.0 | 3/94/3 | | ALLOWABLE COMP, WEIGHT% | | | 22-24/23-27/
50-54 | 5-9/45-47/
45-49 | 58-62/23-
27/
14-16 | 48.5-50.5/ | 44-46/54- | 0.5-1.5/87.5-89.5/ | 2-3/94-96/
2-3 | | BOILING POINT ¹ | ·F · 1.00
ATM | | 46.4 TO -
33.0 | -48.8 TO -
47.9 | -32.4 TO -
18.2 | -60.1 TO -
60.0 | -60.3 TO -
60.2 | | | | | ,C · 1.00
ATM | | -43.6 TO -
36.6 | -44.9 TO -
44.4 | -35.8 TO -
27.9 | -51.2 TO -
51.1 | -51.3 TO -
51.2 | | | | BOILING POINT RANGE ¹ | × | 1 | 7.0 | 0.5 | 7.9 | 0.1 | 0.1 | | | | VAPOR PHASE
CONTAMINANTS:
AIRAND OTHER NON-
CONDENSABLES | % BY
VOLUME
• 25•C | 5.9 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 51 | 15 | | LIQUID PHASE
CONTAMINANTS: | | | | | | | | | | | WATER | PPM BY
WEIGHT | 5.4 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | ALL OTHER IMPURITIES
INCLUDING REFRIGERANTS | % BY
WEIGHT | 5.1 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | | HIGH BOILING RESIDUE | % BY
VOLUME | 5.7 | 0.01 | 0.01 | 0.01 | 10:0 | 0.01 | 0.01 | 0:01 | | PARTICULATES/SOLIDS | VISUALLY
CLEAN TO
PASS | 5.8 | PASS | ACIDITY | PPM BY
WEIGHT | 5.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Table | 1C. Physica | al Properties | s of Azeotro | pic Blends (50 | Table 1C. Physical Properties of Azeotropic Blends (500 Series Refrigerants) | igerants) | | |---|------------------------------|----------------------------------|---------------|-------------------------|--|---------------|---------| | | REPORTIN
G UNITS | REFERENC
E
(SUBCLAUS
E) | R500 | R502 | R503 | R507 | R508 3 | | CHARACTERISTICS: | | | | | | | | | REFRIGERANT
COMPONENTS | | | R12/152A | R22/115 | R23/13 | R125/143A | R23/116 | | NOMINAL COMP, WEIGHT% | | | 73.8/26.2 | 48.8/51.2 | 40.1/59.9 | 50/50 | 39/61 | | ALLOWABLE COMP, WEIGHT% | | | 72.8-74.8/ | 44.8-52.8/
47.2-55.2 | 39-41/
59-61 | 49-51/ | 37-41/ | | BOILING POINT 1 | ·F · 1.00 ATM | 3 | -28.1 | -49.7 | -127.7 | -52.1 | -123.5 | | | 'C · 1.00 ATM | ** | -33.4 | -45.4 | -88.7 | -46.7 | -86.4 | | BOILING POINT RANGE ¹ | × | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | VAPOR PHASE CONTAMINANTS: | | | | | | | | | AIR AND OTHER NON-
CONDENSABLES | % BY
VOLUME
25·C | 5.9 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | LIQUID PHASE CONTAMINANTS: | | | | | | | | | WATER | PPM BY
WEIGHT | 5.4 | 10 | 10 | 10 | 10 | 10 | | ALL OTHER IMPURITIES
INCLUDING REFRIGERANTS | % BY
WEIGHT | 5.1 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | | HIGH BOILING RESIDUE | % BY
Volume | 5.7 | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | | Particulates/solids | VISUALLY
CLEAN TO
PASS | 5.8 | PASS | PASS | PASS | PASS | PASS | | ACIDITY | PPM BY
WEIGHT | 5.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | CHLORIDES 2 | NO VISIBLE
TURBIDITY | 5,5 | PASS | PASS | PASS | PASS | PASS | | ¹ BOILING POINTS AND BOILING POINT RANGES, ALTHOUGH NOT REQUIRED, ARE PROVIDED FOR INFORMATIONAL PURPOSES. | POINT RANGI | ES, ALTHOUGH | NOT REQUIRE | D, ARE PROVIDE | D FOR INFORMA | TIONAL PURPOS | JES. | | ² RECOGNIZED CHLORIDE LEVEL FOR PASS/FAIL IS 3PPM. | FOR PASS/FAI | L IS 3PPM. | | | | | | | ³ SHADED COLUMNS DENOTE REFRIGERANTS FOR WHICH ANALYTICAL DATA IS NOT AVAILABLE. | FRIGERANTS | OR WHICH AN | NALYTICAL DAT | A IS NOT AVAILA | .BLE. | | | ### APPENDIX A. REFERENCES—NORMATIVE Listed here are all standards, handbooks, and other publications essential to the formation and implementation of the standard. All references in this appendix are considered as part of this standard. ASHRAE Terminology of Heating, Ventilating, Air Conditioning and Refrigeration, American Society of Heating Refrigeration and Air-Conditioning Engineers, 1992, 1791 Tullie Circle NE., Atlanta, GA 30329-2305; U.S.A. ASHRAE Standard 34–1992, Number Designation and Safety Classification of Refrigerants, American Society of Heating Refrigeration and Air-Conditioning Engineers, 1992, 1791 Tullie Circle NE., Atlanta, GA 30329–2305; U.S.A. Appendix C to ARI Standard 700–1995: Analytical Procedures to ARI Standard 700–1995, Specifications for Fluorocarbon and Other Refrigerants, Air-Conditioning and Refrigeration Institute, 1995, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203; U.S.A. Federal Specification for Fluorocarbon Refrigerants, BB-F-1421-B, dated March 5, 1992, ### Pt. 82, Subpt. F, App. A1 Office of the Federal Register, National Archives and Records Administration, 1992, 800 North Capitol Street, NW., Washington, D.C. 20402; U.S.A. [69 FR 11981, Mar. 12, 2004] APPENDIX A1 TO SUBPART F OF PART 82—GENERIC MAXIMUM CONTAMINANT LEVELS | Contaminant | Reporting units | |---|--| | Air and Other Non-
condensables. | 1.5% by volume @ 25 °C (N/
A for refrigerants used in
low-pressure appliances 1). | | Water | 10 ppm by weight 20 ppm by
weight (for refrigerants
used in low-pressure appli-
ances 1). | | Other Impurities Including Refrigerant. | 0.50% by weight. | | High boiling residue | 0.01% by volume.
visually clean to pass.
1.0 ppm by weight.
No visible turbidity. | $^{^{1}\}mbox{Low-pressure}$ appliances means an appliance that uses a refrigerant with a liquid phase saturation pressure below 45 psia at 104 $^{\circ}\mbox{F}.$ ### BLEND COMPOSITIONS
(WHERE APPLICABLE) | Nominal composition (by weight%) | Allowable composition (by weight%) | |--|------------------------------------| | Component constitutes 25% or more | ±2.0 | | Component constitutes less than 25% but greater than 10% | ±1.0 | | Component constitutes less than or equal to 10% | ±0.5 | $[69\;\mathrm{FR}\;11988,\,\mathrm{Mar}.\;12,\,2004]$ APPENDIX B1 TO SUBPART F OF PART 82—PERFORMANCE OF REFRIGERANT RECOVERY, RECYCLING AND/OR RECLAIM EQUIPMENT This appendix is based on the Air-Conditioning and Refrigeration Institute Standard 740–1993. # $\begin{array}{c} \text{Refrigerant Recovery/Recycling} \\ \text{Equipment} \end{array}$ ### Section 1. Purpose 1.1 Purpose. The purpose of this standard is to establish methods of testing for rating and evaluating the performance of refrigerant recovery, and/or recycling equipment, and general equipment requirements (herein referred to as "equipment") for containment or purity levels, capacity, speed, and purge loss to minimize emission into the atmosphere of designated refrigerants. 1.1.1 This standard is intended for the guidance of the industry, including manufacturers, refrigerant reclaimers, repackers, distributors, installers, servicemen, contractors and for consumers. - 1.1.2 This standard is not intended to be used as a guide in defining maximum levels of contaminants in recycled or reclaimed refrigerants used in various applications. - 1.2 Review and Amendment. This standard is subject to review and amendment as the technology advances. #### Section 2. Scope 2.1 Scope. This standard defines general equipment requirements and the test apparatus, test mixtures, sampling and analysis techniques that will be used to determine the performance of recovery and/or recycling equipment for various refrigerants including R11, R12, R13, R22, R113, R114, R123, R134a, R500, R502, and R503, as referenced in the ANSI/ASHRAE Standard 34–1992, "Number Designation of Refrigerants" (American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.). #### Section 3. Definitions - 3.1 Recovered refrigerant. Refrigerant that has been removed from a system for the purpose of storage, recycling, reclamation or transportation. - $3.2\;$ Recover. Reference 40 CFR 82.152. - $3.3\;$ Recycle. Reference 40 CFR 82.152. - 3.4 Reclaim. Reference 40 CFR 82.152. - 3.5 Standard Contaminated Refrigerant Sample. A mixture of new and/or reclaimed refrigerant and specified quantities of identified contaminants which are representative of field obtained, used refrigerant samples and which constitute the mixture to be processed by the equipment under test. - 3.6 Push/Pull Method. The push/pull refrigerant recovery method is defined as the process of transferring liquid refrigerant from a refrigeration system to a receiving vessel by lowering the pressure in the vessel and raising the pressure in the system, and by connecting a separate line between the system liquid port and the receiving vessel. - 3.7 Recycle Rate. The amount of refrigerant processed (in pounds) divided by the time elapsed in the recycling mode in pounds per minute. For equipment which uses a separate recycling sequence, the recycle rate does not include the recovery rate (or elapsed time). For equipment which does not use a separate recycling sequence, the recycle rate is a maximum rate based solely on the higher of the liquid or vapor recovery rate, by which the rated contaminant levels can be achieved. - 3.8 Equipment Classification. - 3.8.1 Self Contained Equipment. A refrigerant recovery or recycling system which is capable of refrigerant extraction without the assistance of components contained within an air conditioning or refrigeration system. - 3.8.2 System Dependent Equipment, Refrigerant recovery equipment which requires for its operation the assistance of components contained in an air conditioning or refrigeration system. - ion system. 3.9 "Shall", "Should", "Recommended" or "It is Recommended", "Shall" "Should", "It is Recommended", "Shall" "Should", "recommended", or "it is recommended" shall be interpreted as follows: - 3.9.1 Shall. Where "shall" or "shall not" is used for a provision specified, that provision is mandatory if compliance with the standard is claimed. - 3.9.2 Should, Recommended, or It is Rec-"Should", "recommended", is ommended, used to indicate provisions which are not mandatory but which are desirable as good practice. #### Section 4. General Equipment Requirements - 4.1 The equipment manufacturer shall provide operating instructions, necessary maintenance procedures, and source information for replacement parts and repair. - 4.2 The equipment shall indicate when any filter/drier(s) needs replacement. This requirement can be met by use of a moisture transducer and indicator light, by use of a sight glass/moisture indicator, or by some measurement of the amount of refrigerant processed such as a flow meter or hour - meter. Written instructions such as "to change the filter every 400 pounds, or every 30 days" shall not be acceptable except for equipment in large systems where the Liquid Recovery Rate is greater than 25 lbs/min [11.3 Kg/min] where the filter/drier(s) would be changed for every job. - 4.3 The equipment shall either automatically purge non-condensables if the rated level is exceeded or alert the operator that the non-condensable level has been exceeded. While air purge processes are subject to the requirements of this section, there is no specific requirement to include an air purge process for "recycle" equipment. - 4.4 The equipment's refrigerant loss due to non-condensable purging shall not be exceeded 5% by weight of total recovered refrigerant, (See Section 9.4) - 4.5 Internal hose assemblies shall not exceed a permeation rate of 12 pounds mass per square foot $[5.8 \text{ g/cm}^2]$ of internal surface per year at a temperature of 120 F [48.8 °C] for any designated refrigerant. - 4.6 The equipment shall be evaluated at 75 F [24 °C] per 7.1. Normal operating conditions range from 50 °F to 104 F [10 °C to 40 °C]. - 4.7 Exemptions: - 4.7.1 Equpment intended for recovery only shall be exempt from sections 4.2 and 4.3. TABLE 1—STANDARD CONTAMINATED REFRIGERANT SAMPLES | | R11 | R12 | R13 | R22 | R113 | R114 | R123 | R134a | R500 | R502 | R503 | |--|-----------|-----|--------|----------|------|------|------|-------|------|----------|--------| | Moisture content: PPM by weight of pure re- frigerant Particulate content: PPM by weight | 100 | 80 | 30 | 200 | 100 | 85 | 100 | 200 | 200 | 200 | 30 | | of pure re-
frigerant
character-
ized by ¹
Acid content:
PPM by weight | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | | of pure re-
frigerant—
(mg KOH
per kg
refrig.) char-
acterized | 500 | 400 | | 500 | 400 | 000 | 500 | 400 | 400 | 400 | | | by ² | 500 | 100 | NA | 500 | 400 | 200 | 500 | 100 | 100 | 100 | NA
 | | erant
Viscosity
(SUS) | 20
300 | 150 | NA
 | 5
300 | 300 | 300 | 300 | 150 | 150 | 5
150 | NA NA | | Non conden-
sable gases
air content
% volume ³ ≤ | NA | 3 | 3 | 3 | NA | 3 | 3 | 3 | 3 | 3 | 3 | ¹Particulate content shall consist of inert materials and shall comply with particulate requirements in *ASHRAE* Standard 63.2, "Method of Testing of Filtration Capacity of Refrigerant Liquid Line Filters and Filter Driers." ²Acid consists of 60% oleic acid and 40% hydrochloric acid on a total number basis. ³ Synthetic ester based oil. ### 40 CFR Ch. I (7-1-07 Edition) ### Pt. 82, Subpt. F, App. B1 Section 5. Contaminated Refrigerants - 5.1 The standard contaminated refrigerant sample shall have the characteristics specified in Table 1, except as provided in 5.2 - 5.2 Recovery equipment not rated for any specific contaminant can be tested with new or reclaimed refrigerant. ### Section 6. Test Apparatus - 6.1 Self Contained Equipment Test Apparatus. The apparatus as shown in Figure 1 consists of a 3 cubic foot [0.085 m³] mixing chamber with a conical-shaped bottom, although a larger mixing chamber is permissible. The size of the mixing chamber depends upon the size of the equipment. The outlet at the bottom of the cone and all restrictions and valves for liquid and vapor refrigerant lines in the test apparatus shall be a minimum of 0.375 in. [9.5 mm] inside diameter or equivalent. The minimum inside diameter for large equipment for use on chillers shall be 1.5 in. [38 mm.]. The mixing chamber shall contain various ports for receiving liquid refrigerant, oil, and contaminants. A recirculating line connected from the bottom outlet through a recirculating pump and then to a top vapor port shall be provided for stirring of the mixture. Isolation valves may be required for the pump. Alternative stirring means may be used if demonstrated to be equally effective. - 6.1.1 For liquid refrigerant feed, the liquid valve is opened. For vapor refrigerant feed, the vapor valve is opened and refrigerant passes through an evaporator coil. Flow is controlled by a thermostatic expansion valve to create 5 F [3 °C] superheat at an evaporator temperature of 70 F ± 3 F[21 °C ± 2 °]. The evaporator coil or equivalent evaporator means shall be either sized large enough for the largest system or be sized for each system. - 6.1.2 An alternative method for vapor refrigerant feed is to pass through a boiler and then an automatic pressure regulating valve set at refrigerant saturation pressure at 75 F ± 3 F [24 °C ± 2 °C]. - 6.2 System Dependent Equipment Test Apparatus. This test apparatus is to be used for final recovery vacuum rating of all system dependent equipment. - 6.2.1 The test apparatus shown in Figure 2 consists of a complete refrigeration system. The manufacturer shall identify the refrigerants to be tested. The test apparatus can be modified
to facilitate operation or testing of the system dependent equipment if the modifications to the apparatus are specifically described within the manufacturer's literature. (See Figure 2.) A 1/4 inch [6.3 mm] balance line shall be connected across the test apparatus between the high and low pressure sides, with an isolation valve located at the connection to the compressor high side. A 1/4 inch [6.3 mm] access port with a valve core shall be located in the balance line for the purpose of measuring final recovery vacuum at the conclusion of the test. FIGURE 1 Test Apparatus for Self-Contained Equipment ### FIGURE 2 # System-Dependent Equipment Test Apparatus Configuration of a standard air conditioning or refrigeration system for use as a test apparatus Section 7. Performance Testing - 7.1 Contaminant removal and performance testing shall be conducted at 75 F ± 2 F [23.9 °C ± 1.1 °C]. - 7.1.1 The equipment shall be prepared for operation per the instruction manual. - 7.1.2 The contaminated sample batch shall consist of not less than the sum of the amounts required to complete steps 7.1.2.2 and 7.1.2.3 below. - 7.1.2.1 A liquid sample shall be drawn from the mixing chamber prior to starting the test to assure quality control of the mixing process. - 7.1.2.2 Vapor refrigerant feed testing, if elected, shall normally be processed first. After the equipment reaches stabilized conditions of condensing temperature and/or storage tank pressure, the vapor feed recovery rate shall be measured. One method is to start measuring the vapor refrigerant recovery rate when 85% of refrigerant remains in the mixing chamber and continue for a period of time sufficient to achieve the accuracy in 9.2. If liquid feed is not elected, complete Step 7.1.2.4. - 7.1.2.3 Liquid refrigerant feed testing, if elected, shall be processed next. After the equipment reaches stabilized conditions, the liquid feed recovery rate shall be measured. One method is to wait 2 minutes after starting liquid feed and then measure the liquid refrigerant recovery rate for a period of time sufficient to achieve the accuracy in 9.1. Continue liquid recovery operation as called for in 7.1.2.4. - 7.1.2.4 Continue recovery operation until all liquid is removed from the mixing chamber and vapor is removed to the point where the equipment shuts down per automatic means or is manually stopped per the operating instructions. - 7.1.2.5 After collecting the first contaminated refrigerant sample batch, the liquid and vapor value of the apparatus shall be closed and the mixing chamber pressure recorded after 1 minute as required in 9.5. After preparing a second contaminated refrigerant sample batch, continue recovery until the storage container reaches 80% liquid fill level. After recycling and measuring the recycle rate per section 7.1.3, set this container aside for the vapor sample in 8.2.2. - 7.1.2.6 Interruptions in equipment operations as called for in instruction manual are allowable. - 7.1.3 Recycle as called for in equipment operating instructions. Determine recycle rate by appropriate means as required in 9.3. - 7.1.4 Repeat steps 7.1.2, 7.1.2.4, and 7.1.3 with contaminated refrigerant sample until equipment indicator(s) show need to change filter(s). It will not be necessary to repeat the recycle rate determination in 7.1.3. - 7.1.4.1 For equipment with a multiple pass recirculating filter system, analyze the contents of the previous storage container. - 7.1.4.2 For equipment with a single pass filter system, analyze the contents of the current storage container. - 7.1.5 Refrigerant loss due to the equipment's non-condensable gas purge shall be determined by appropriate means. (See Section 9.4.) - 7.2 System Dependent Equipment. This procedure shall be used for vacuum rating of all system dependent equipment. Liquid refrigerant recovery rate, vapor refrigerant recovery rate, and recycle rate are not tested on system dependent systems. - 7.2.1 The apparatus operation and testing shall be conducted at 75 F ± 2 F. [23.9 °C. $\pm /1.1.$ °C.]. - 7.2.2 The apparatus shall be charged with refrigerant per its system design specifications - 7.2.3 For measurement of final recovery vacuum as required in 9.5, first shut the balance line isolation valve and wait 1 minute for pressure to balance. Then connect and operate the recovery system per manufacturers recommendations. When the evacuation is completed, open the balance line isolation valve and measure the pressure in the balance line. # Section 8. Sampling and Chemical Analysis Methods 8.1 The referee test methods for the various contaminants are summarized in the following paragraphs. Detailed test procedures are included in Appendix A "Test Procedures for ARI STD 700." If alternate test methods are employed, the user must be able to demonstrate that they produce results equivalent to the specified referee method. 8.2 Refrigerant Sampling. - 8.2.1 Sampling Precautions. Special precautions should be taken to assure that representative samples are obtained for analysis. Sampling shall be done by trained laboratory personnel following accepted sampling and safety procedures. - 8.2.2 Gas Phase Sample. A gas phase sample shall be obtained for determining the non-condensables. Since non-condensable gases, if present, will concentrate in the vapor phase of the refrigerant, care must be exer- cised to eliminate introduction of air during the sample transfer. Purging is not and acceptable procedure for a gas phase sample since it may introduce a foreign product. Since R11, R113 and R123 have normal boiling points at or above room temperature, noncondensable determination is not required for these refrigerants. - 8.2.2.1 The sample cylinder shall be connected to an evacuated gas sampling bulb by means of a manifold. The manifold should have a valve arrangement that facilitates evacuation of all connecting tubing leading to the sampling bulb. - 8.2.2.2 After the manifold has been evacuated, close the valve to the pump and open the valve on the system. Allow the pressure to equilibrate and close valves. - 8.2.3 Liquid Phase Sample. A liquid phase sample is required for all tests listed in this standard, except the test for non-condensables. - 8.2.3.1 Place an empty sample cylinder with the valve open in an oven at 230 F [110 °C] for one hour. Remove it from the oven while hot, immediately connect to an evacuation system and evacuate to less than 1mm. mercury (1000 microns). Close the valve and allow it to cool. - 8.2.3.2 The valve and lines from the unit to be sampled shall be clean and dry. Connect the line to the sample cylinder loosely. Purge through the loose connection. Make the connection tight at the end of the purge period. Take the sample as a liquid by chilling the sample cylinder slightly. Accurate analysis requires that the sample container be filled to at least 60% by volume; however under no circumstances should the cylinder be filled to more than 80% by volume. This can be accomplished by weighing the empty cylinder and then the cylinder with refrigerant. When the desired amount of refrigerant has been collected, close the valve(s) and disconnect the sample cylinder immediately. - 8.2.3.3 Check the sample cylinder for leaks and record the gross weight. 8.3 Water Content. 8.3.1. The Coulometric Karl Fischer Titration shall be the primary test method for determining the water content of refrigerants. This method is described in Appendix A. This method can be used for refrigerants that are either a liquid or a gas at room temperature. including Refrigerants 11 and 13. For all refrigerants, the sample for water analysis shall be taken from the liquid phase of the container to be tested. Proper operation of the analytical method requires special equipment and an experienced operator. The precision of the results is excellent if proper sampling and handling procedures are followed. Refrigerants containing a colored dve can be successfully analyzed for water using this method. ### Pt. 82, Subpt. F, App. B1 8.3.2 The Karl Fischer Test Method is an acceptable alternative test method for determining the water content of refrigerants. This method is described in ASTM Standard for "Water in gases Using Karl Fisher Reagent" E700–79, reapproved 1984 (American Society for Testing and Materials, Philadelphia, PA). 8.3.3 Report the moisture level in parts per million by weight if a sample is required. 8.4 Chloride. The refrigerant shall be tested for chlorides as an indication of the presence of hydrochloric or similar acids. The recommended procedure is intended for use with new or reclaimed refrigerants. Significant amounts of oil may interfere with the results by indicating a failure in the absence of chlorides. 8.4.1 The test method shall be that described in Appendix A "Test Procedures for ARI-700." The test will show noticeable turbidity at equivalent chloride levels of about 3 ppm by weight or higher. 8.4.2 The results of the test shall not exhibit any sign of turbity. Report results as "pass" or "fail." 8.5 Acidity. 8.5.1 The acidity test uses the titration principle to detect any compound that is highly soluble in water and ionizes as an acid. The test method shall be that described in Appendix A. "Test Procedures for ARI-700." The test may not be suitable for determination of high molecular weight organic acids; however these acids will be found in the high boiling residue test outlined in Section 5.7. The test requires about a 100 to 120 gram sample and has a low detection limit of 0.1 ppm by weight as HC1. 8.6 High Boiling Residue. 8.6.1 High boiling residue will be determined by measuring the residue of a standard volume of refrigerant after evaporation. The refrigerant sample shall be evaporated at room temperature or a temperature 50 F [10°.0C], above the boiling point of the sample using a Goetz tube as specified in Appendix A "Test Procedures for ARI-700." Oils and or organic acids will be captured by
this method. 8.6.2 The value for high boiling residue shall be expressed as a percentage by volume. 8.7 Particulates/Solids. 8.7.1 A measured amount of sample is evaporated from a Goetz bulb under controlled temperature conditions. The particulates/solids shall be determined by visual examination of the empty Goetz bulb after the sample has evaporated completely. Presence of dirt, rust or other particulate contamination is reported a "fail." For details of this test method, refer to Appendix B "Test Procedures for ARI-700." 8.8 Non-Condensables 8.8.1 A vapor phase sample shall be used for determination of non-condensables. Non- condensable gases consist primarily of air accumulated in the vapor phase of refrigerant containing tanks. The solubility of air in the refrigerants liquid phase is extremely low and air is not significant as a liquid phase contaminant. The presence of non-condensable gases may reflect poor quality control in transferring refrigerants to storage tanks and cylinders. 8.8.2 The test method shall be gas chromatography with a thermal conductivity detector as described in Appendix A "Test Procedures for ARI-700." 8.8.2.1 The Federal Specification for "Fluorocarbon Refrigerants," BB-F-1421B, dated March 5, 1992, section 4.4.2 (perchloroethylene method) is an acceptable alternate test method. 8.8.3 Report the level of non-condensable as percent by volume. Section 9. Performance Calculation and Rating 9.1 The liquid refrigerant recovery rate shall be expressed in pounds per minute [kg/min] and measured by weight change at the mixing chamber (See Figure 1) divided by elapsed time to an accuracy within .02 lbs/min. [.009 kg/min]. Ratings using the Push/Pull method shall be identified "Push/Pull". Equipment may be rated by both methods. 9.2 The vapor refrigerant recovery rate shall be expressed in pounds per minute [kg/min] and measured by weight change at the mixing chamber (See Figure 1) divided by elapsed time to an accuracy within .02 lbs/min. [.0.009 kg/min]. 9.3 The recycle rate is defined in 3.7 and expressed in pounds per minute [kg/min] of flow and shall be per ASHRAE 41.7-84 "Procedure For Fluid Measurement Of Gases" or ASHRAE 41.8-89 "Standard Method of Flow of Fluids—Liquids." 9.3.1 For equipment using multipass recycling or a separate sequence, the recycle rate shall be determined by dividing the net weight W of the refrigerant to be recycled by the actual time T required to recycle the refrigerant. Any set-up or operator interruptions shall not be included in the time T. The accuracy of the recycle rate shall be within .02 lbs/min. [.009 kg/min]. 9.3.2 If no separate recycling sequence is used, the recycle rate shall be the higher of the vapor refrigerant recovery rate or the liquid refrigerant recovery rate. The recycle rate shall match a process which leads to contaminant levels in 9.6. Specifically, a recovery rate determined from bypassing a contaminant removal device cannot be used as a recycle rate when the contaminant levels in 9.6 are determined by passing the refrigerant through the containment removal device. 9.4 Refrigerant loss due to non-condensable purging shall be less than 5%. This rating shall be expressed as "passed" if less than 5%. ### Pt. 82, Subpt. F, App. B1 This calculation will be based upon net loss of non-condensables and refrigerant due to the purge divided by the initial net content. The net loss shall be determined by weighing before and after the purge, by collecting purged gases, or an equivalent meth- 9.5 The final recovery vacuum shall be the mixing chamber pressure called for in 7.1.2.5 expressed in inches of mercury vacuum, [mm Hg or kP]. The accuracy of the measurement shall be within ±.1 inch [±2.5mm] of Hg and rounding down to the nearest whole number. 9.6 The contaminant levels remaining after testing shall be published as follows: Moisture content, PPM by weight Chloride ions, Pass/Fail Acidity, PPM by weight High boiling residue, percentage by volume Particulate/solid, Pass/Fail Non-condensables, % by volume 9.7 Product Literature: Except as provided under product labelling in Section 11. performance ratings per 9.1, 9.2, 9.3, and 9.5 must be grouped together and shown for all listed refrigerants (11.2) subject to limitations of 9.8. Wherever any contaminant levels per 9.6 are rated, all ratings in 9.6 must be shown for all listed refrigerants subject to limitations of 9.8. The type of equipment in 11.1 must be included with either grouping. Optional ratings in 9.8 need not be shown. 9.8 Ratings shall include all of the parameters for each designed refrigerant in 11.2 as shown in Tables 2 and 3. TABLE 2—PERFORMANCE | Parameter/type of equipment | Recov-
ery | Recovery/
recycle | Recycle | System
depend-
ent
equip-
ment | |---|---------------|----------------------|---------|--| | Liquid refrigerant recovery rate Vapor refrigerant recovery rate Final recovery vacuum Recycle rate Refrigerant loss due to non-condensable purging | (2) | (2) | N/A | N/A | | | (2) | (2) | N/A | N/A | | | (1) | (1) | N/A | (1) | | | N/A | (1) | (1) | N/A | | | (3) | (1) | (1) | N/A | ### TABLE 3—CONTAMINANTS | Contaminant/type of equipment | Recovery | Recovery/
recycle | Recycle | System de-
pendent equip-
ment | |---|--|-----------------------|-----------------------|--------------------------------------| | Moisture content Chloride ions Acidity High boiling residue Particulates Non-condensables | (*)
(*)
(*)
(*)
(*)
(*) | x
x
x
x
x | x
x
x
x
x | NA.
NA.
NA.
NA.
NA. | ^{*}For Recovery Equipment, these parameters are optional. If not rated, use N/A. x Mandatory rating ### Section 10. Tolerances 10.1 Any equipment tested shall produce contaminant levels not higher than the published ratings. The liquid refrigerant recovery rate, vapor refrigerant recovery rate, final recovery vacuum and recycle rate shall not be less than the published ratings. ### Section 11. Product Labelling - 11.1 Type of equipment. The type of equipment shall be as listed: - 11.1.1 Recovery only - 11.1.2 System Dependent Recovery - 11.1.3 Recovery/Recycle - 11.1.4 Recycle only - 11.2 Designated refrigerants and the following as applicable for each: - 11.2.1 Liquid Recovery Rate - 11.2.2 Vapor Recovery Rate - 11.2.3 Final Recovery Vacuum - 11.2.4 Recycle Rate - 11.3 The nameplate shall also conform to the labeling requirements established for certified recycling and recovery equipment established at 40 CFR 82.158(h). ### ATTACHMENT TO APPENDIX B1 Particulate Used in Standard Contaminated Refrigerant Sample. ¹ Mandatory rating. ² For a recovery or recovery/recycle unit, one must rate for either liquid feed only or vapor feed only or can rate for both. If rating only the one, the other shall be indicated by "N/A." ³ For Recovery Equipment, these parameters are optional. If not rated, use N/A. ### Pt. 82, Subpt. F, App. B2 #### 1. Particulate Specification 1.1 The particulate material pm will be a blend of 50% coarse air cleaner dust as received, and 50% retained on a 200-mesh screen. The coarse air cleaner dust is available from: AC Spark Plug Division, General Motors Corporation, Flint, Michigan. #### 1.2 Preparation of Particulate Materials To prepare the blend of contaminant, first wet screen a quantity of coarse air cleaner dust on a 200-mesh screen (particle retention 74 pm). This is done by placing a portion of the dust on a 200-mesh screen and running water through the screen while stirring the dust with the fingers. The fine contaminant particles passing through the screen are discarded. The +200 mesh particles collected on the screen are removed and dried for one hour at 230 F [110 °C]. The blend of standard contaminant is prepared by mixing 50% by weight of coarse air cleaner dust as received after drying for one hour at 230 F [110 $^{\circ}\mathrm{C}]$ with 50% by weight of the +200 mesh screened dust. 1.3 The coarse air cleaner dust as received and the blend used as the standard contaminant have the following approximate particle size analysis: Wt. % in various size ranges, pm. | Size range | As received | Blend | |------------|--------------|-------| | CIZC range | 7.0 TOOBIVEU | Diena | | 0–5 | 12 | 6 | | 5–10 | 12 | 6 | | 10–20 | 14 | 7 | | 20-40 | 23 | 11 | | 40-80 | 30 | 32 | | 80–200 | 9 | 38 | [58 FR 28712, May 14, 1993, as amended at 59 FR 42960, Aug. 19, 1994. Redesignated and amended at 68 FR 43815, July 24, 2003] APPENDIX B2 TO SUBPART F OF PART 82—PERFORMANCE OF REFRIGERANT RECOVERY, RECYCLING, AND/OR RECLAIM EQUIPMENT This appendix is based on the Air-Conditioning and Refrigeration Institute Standard 740–1995. ### Section 1. Purpose 1.1 Purpose. The purpose of this standard is to establish methods of testing for rating and evaluating the performance of refrigerant recovery, and/or recycling equipment and general equipment requirements (herein referred to as "equipment") for contaminant or purity levels, capacity, speed and purge loss to minimize emission into the atmosphere of designated refrigerants. #### Section 2. Scope 2.1 Scope. This standard applies to equipment for recovering and/or recycling single refrigerants, azeotropics, zeotropic blends, and their normal contaminants from refrigerant systems. This standard defines the test apparatus, test gas mixtures, sampling procedures and analytical techniques that will be used to determine the performance of refrigerant recovery and/or recycling equipment (hereinafter, "equipment"). #### Section 3. Definitions - 3.1 Definitions. All terms in this appendix will follow the definitions in §82.152 unless otherwise defined in this
appendix. - 3.2 Clearing Refrigerant. Procedures used to remove trapped refrigerant from equipment before switching from one refrigerant to another. - 3.3 High Temperature Vapor Recovery Rate. For equipment having at least one designated refrigerant (see 11.2) with a boiling point in the range of -50 to +10 °C, the rate will be measured for R-22, or the lowest boiling point refrigerant if R-22 is not a designated refrigerant. - 3.4 Published Ratings. A statement of the assigned values of those performance characteristics, under stated rating conditions, by which a unit may be chosen to fit its application. These values apply to all units of like nominal size and type (identification) produced by the same manufacturer. As used herein, the term "published rating" includes the rating of all performance characteristics shown on the unit or published in specifications, advertising or other literature controlled by the manufacturer, at stated rating conditions - 3.5 Push/Pull Method. The push/pull refrigerant recovery method is defined as the process of transferring liquid refrigerant from a refrigeration system to a receiving vessel by lowering the pressure in the vessel and raising the pressure in the system, and by connecting a separate line between the system liquid port and the receiving vessel. - 3.6 Recycle Flow Rate. The amount of refrigerant processed divided by the time elapsed in the recycling mode. For equipment which uses a separate recycling sequence, the recycle rate does not include the recovery rate (or elapsed time). For equipment which does not use a separate recycling sequence, the recycle rate is a rate based solely on the higher of the liquid or vapor recovery rate, by which the contaminant levels were measured. - 3.7 Residual Trapped Refrigerant. Refrigerant remaining in equipment after clearing. - 3.8 Shall, Should, Recommended or It Is Recommended shall be interpreted as follows: - 3.8.1 Shall. Where "shall" or "shall not" is used for a provision specified, that provision is mandatory if compliance with this appendix is claimed. - 3.8.2 Should, Recommended or It Is Recommended is used to indicate provisions which are not mandatory but which are desirable as good practice. - 3.9 Standard Contaminated Refrigerant Sample. A mixture of new or reclaimed refrigerant and specified quantities of identified contaminants which constitute the mixture to be processed by the equipment under test. These contaminant levels are expected only from severe service conditions. - 3.10 Trapped Refrigerant. The amount of refrigerant remaining in the equipment after the recovery or recovery/recycling operation but before clearing. - 3.11 Vapor Recovery Rate. The average rate that refrigerant is withdrawn from the mixing chamber between two pressures as vapor recovery rate is changing pressure and temperature starting at saturated conditions either 24 °C or at the boiling point 100 kPa (abs), whichever is higher. The final pressure condition is 10% of the initial pressure sure to tower than the equipment final recovery vacuum and not higher than 100 kPa (abs). ### Section 4. General Equipment Requirements - 4.1 Equipment Information. The equipment manufacturer shall provide operating instructions, necessary maintenance procedures and source information for replacement parts and repair. - 4.2 Filter Replacement. The equipment shall indicate when any filter/drier(s) needs replacement. This requirement can be met by use of a moisture transducer and indicator light, by use of a sight glass/moisture indicator or by some measurement of the amount of refrigerant processed such as a flow meter or hour meter. Written instructions such as "to change the filter every 181 kg, or every 30 days" shall not be acceptable except for equipment in large systems where the liquid recovery rate is greater than 11.3 kg/min where the filter/drier(s) would be changed for every job. - 4.3 Purge of Non-Condensable. If non-condensables are purged, the equipment shall either automatically purge non-condensables or provide indicating means to guide the purge process. - 4.4 Purge Loss. The total refrigerant loss due to purging non-condensables, draining oil and clearing refrigerant (see 9.5) shall be less than 3% (by weight) of total processed refrigerant. - 4.5 Permeation Rate. High pressure hose assemblies ½ in. [16 mm] nominal and smaller shall not exceed a permeation rate of 3.9 g/cm²/yr (internal surface) at a temperature of 48.8 °C. Hose assemblies that UL recognized as having passed ANSI/UL 1963 requirements shall be accepted without testing. See 7.1.4. - 4.6 Clearing Trapped Refrigerant. For equipment rated for more than one refrig- erant, the manufacturer shall provide a method and instructions which will accomplish connections and clearing within 15 minutes. Special equipment, other than a vacuum pump or manifold gauge set shall be furnished. The clearing procedure shall not rely upon the storage cylinder below saturated pressure conditions at ambient temperature. - 4.7 Temperature. The equipment shall be evaluated at 24 °C with additional limited evaluation at 40 °C. Normal operating conditions range from 10 °C to 40 °C. - 4.8 Exemptions. Equipment intended for recovery only shall be exempt from 4.2 and 4.3. #### Section 5. Contaminated Refrigerants - 5.1 Sample Characteristics. The standard contaminated refrigerant sample shall have the characteristics specified in Table 1, except as provided in 5.2. - 5.2 Recovery-Only Testing. Recovery equipment not rated for any specific contaminant shall be tested with new or reclaimed refrigerant. ### Section 6. Test Apparatus - 6.1 General Recommendations. The recommended test apparatus is described in the following paragraphs. If alternate test apparatus are employed, the user shall be able to demonstrate that they produce results equivalent to the specified referee apparatus. - 6.2 Self-Contained Equipment Test Apparatus. The apparatus, shown in Figure 1, shall consist of: - 6.2.1 Mixing Chamber. A mixing chamber consisting of a tank with a conical-shaped bottom, a bottom port and piping for delivering refrigerant to the equipment, various ports and valves for adding refrigerant to the chamber and stirring means for mixing. - 6.2.2 Filling Storage Cylinder. The storage cylinder to be filled by the refrigerant transferred shall be cleaned and at the pressure of the recovered refrigerant at the beginning of the test. It will not be filled over 80%, by volume. - 6.2.3 Vapor Feed. Vapor refrigerant feed consisting of evaporator, control valves and piping to create a 3.0 °C superheat condition at an evaporating temperature of 21 °C ± 2 K. - 6.2.4 Alternative Vapor Feed. An alternative method for vapor feed shall be to pass the refrigerant through a boiler and then through an automatic pressure regulating valve set at different saturation pressures, moving from saturated pressure at 24 °C to final pressure of recovery. - 6.2.5 *Liquid Feed.* Liquid refrigerant feed consisting of control valves, sampling port and piping. - 6.2.6 Instrumentation. Instrumentation capable of measuring weight, temperature, pressure and refrigerant loss, as required. ### 40 CFR Ch. I (7-1-07 Edition) ### Pt. 82, Subpt. F, App. B2 TABLE 1—STANDARD CONTAMINATED REFRIGERANT SAMPLES | | | • | ., | | | | | | | | | |--|-----|-----|-----|-----|------|------|------|-------|------|------|------| | | R11 | R12 | R13 | R22 | R113 | R114 | R123 | R134a | R500 | R502 | R503 | | Moisture Content:
ppm by Weight
of Pure refrig- | | | | | | | | | | | | | erant Particulate Content: ppm by Weight of Pure Refrigerant Char- | 100 | 80 | 30 | 200 | 100 | 85 | 200 | 200 | 200 | 200 | 30 | | acterized by 1
Acid Content: ppm
by Weight of
Pure Refrig-
erant—(mg KOH
per kg Refrig- | 80 | 80 | NA | 80 | 80 | 80 | 80 | 80 | 80 | 80 | NA | | erant) Character-
ized by 2
Mineral Oil Con-
tent:
% by Weight
of Pure Re- | 500 | 100 | NA | 500 | 400 | 200 | 500 | 100 | 100 | 100 | NA | | frigerant
Viscositv | 20 | 5 | NA | 5 | 20 | 20 | 20 | 5 | 5 | 5 | NA | | (SUS) Non-Condensable Gases (Air Content): % by Vol- | 300 | 150 | | 300 | 300 | 300 | 300 | 150³ | 150 | 150 | | | ume | NA | 3 | 3 | 3 | NA | 3 | NA | 3 | 3 | 3 | 3 | ¹ Particulate content shall consist of inert materials and shall comply with particulate requirements in appendix B. ² Acid consists of 60% oleic acid and 40% hydrochloric acid on a total number basis. ³ Synthetic ester-based oil. Figure 1. Test Apparatus for Self-Contained Equipment 6.3 Size. The size of the mixing chamber shall be a minimum of .09 m³. The bottom port and the refrigerant feed shall depend on the size of the equipment. Typically, the mixing valves and piping shall be 9.5 mm. For large equipment to be used on chillers, the minimum inside diameter of ports, valves and pipings shall be the smaller of the manufacturer's recommendation or $37\ \mathrm{mm}$. 6.4 System Dependent Equipment Test Apparatus. This test apparatus is to be used for final recovery vacuum rating of all system dependent equipment. ### Pt. 82, Subpt. F, App. B2 6.4.1 Test Setup. The test apparatus shown in Figure 2 consists of a complete refrigeration system. The manufacturer shall identify the refrigerants to be tested. The test apparatus can be modified to facilitate operation or testing of the system dependent equipment if the modifications to the apparatus are specifically described within the manufacturer's literature. (See Figure 2.) A 6.3 mm balance line shall be connected across the test apparatus between the high and lowpressure sides, with an isolation valve located at the connection to the compressor high side. A 6.3 mm access port with a valve core shall be located in the balance line for the purpose of measuring final recovery vacuum at the conclusion of the test. #### Section 7. Performance
Testing ### 7.1 General Testing. - 7.1.1 Temperatures. Testing shall be conducted at an ambient temperature of 24 °C ± 1 K except high temperature vapor recovery shall be at 40 °C ± 1 K. The evaporator conditions of 6.2.3 shall be maintained as long as liquid refrigerant remains in the mixing chamber. - 7.1.2 Refrigerants. The equipment shall be tested for all designated refrigerants (see 11.2). All tests in Section 7 shall be completed for each refrigerant before starting tests with the next refrigerant. - 7.1.3 Selected Tests. Tests shall be as appropriate for the equipment type and ratings parameters selected (see 9.9, 11.1 and 11.2). - 7.1.4 Hose Assemblies. For the purpose of limiting refrigerant emissions to the atmosphere, hose assemblies shall be tested for permeation according to ANSI/UL Standard 1963, Section 40.10. - 7.2 Equipment Preparation and Operation. The equipment shall be prepared and operated per the operating instructions. - 7.3 Test Batch. The test batch consisting of refrigerant sample (see Section 5) of the test refrigerant shall be prepared and thoroughly mixed. Continued mixing or stirring shall be required during the test while liquid refrigerant remains in the mixing chamber. The mixing chamber shall be filled to 80% level by volume. - 7.3.1 Control Test Batch. Prior to starting the test for the first batch for each refrigerant, a liquid sample will be drawn from the mixing chamber and analyzed per Section 8 to assure that contaminant levels match Table 1 within ±10 ppm for moisture, ±20 ppm for particulate, ±20 ppm for oleic acid and ±0.5% for oil. - 7.4 Recovery Tests (Recovery and Recovery/Recycle Equipment). - 7.4.1 Determining Recovery Rates. The liquid and vapor refrigerant recovery rates shall be measured during the first test batch for each refrigerant (see 9.1, 9.2 and 9.4). Equipment preparation and recovery cylinder changeover shall not be included in elapsed time measurements for determining vapor recovery rate and liquid refrigerant recovery rate. Operations such as subcooling the recovery cylinder shall be included. Recovery cylinder shall be the same size as normally furnished or specified in the instructions by the equipment manufacturer. Oversized tanks shall not be permitted. - 7.4.1.1 Liquid Refrigerant Recovery Rate. If elected, the recovery rate using the liquid refrigerant feed means (see 6.2.5) shall be determined. After the equipment reaches stabilized conditions of condensing temperature and/or recovery cylinder pressure, the recovery process shall be stopped and an initial weight shall be taken of the mixing chamber (see 9.2). The recovery process shall be continued for a period of time sufficient to achieve the accuracy in 9.4. The recovery process shall be stopped and a final weight shall be taken of the mixing chamber. # Configuration of standard air conditioning or refrigeration system for use as a test apparatus Figure 2. System Dependent Equipment Test Apparutus 7.4.1.2 Vapor Refrigerant Recovery Rate. If elected, the average vapor flow rate shall be measured to accuracy requirements in clause 9.4 under conditions with no liquid refrigerant in the mixing chamber. The liquid recovery feed means shall be used. At initial conditions of saturated vapor at the higher of 24 °C or the boiling temperature (100 kPa absolute pressure), the weight of the mixing chamber and the pressure shall be recorded. At final conditions representing pressure in the mixing chamber of 10% of the initial condition, but not less than the final recovery vacuum (see 9.6) nor more than 100 kPa, measure the weight of the mixing chamber and the elapsed time. 7.4.1.3 High Temperature Vapor Recovery Rate. Applicable for equipment having at least one designated refrigerant (see 11.2) with a boiling point between -50 °C and +10 °C. Measure the rate for R-22, or the refrigerant with the lowest boiling point if R-22 is not a designated refrigerant. Repeat the test in 7.4.1.2 at saturated conditions at 40 °C and continue to operate equipment to assure it will achieve the final recovery vacuum (see 7.4.3). 7.4.2 Recovery Operation. This test is for determining the final recovery vacuum and the ability to remove contaminants as appropriate. If equipment is rated for liquid recovery (see 7.4.1.3), liquid recovery feed means described in 6.2.5 shall be used. If not, vapor recovery means described in 6.2.3 or 6.2.4 shall be used. Continue recovery operation until all liquid is removed from the test apparatus and vapor is removed to the point where equipment shuts down by automatic means or is manually shut off per operating instructions. 7.4.2.1 Oil Draining. Capture oil from the equipment at intervals as required in the instructions. Record the weight of the container. Completely remove refrigerant from oil by evacuation or other appropriate means. The weight difference shall be used in 9.5.2. 7.4.3 Final Recovery Vacuum. At the end of the first test batch for each refrigerant, the liquid valve and vapor valve of the apparatus shall be closed. After waiting 1 minute, the mixing chamber pressure shall be recorded (see 9.6). 7.4.4 Residual Refrigerant. This test will measure the mass of remaining refrigerant in the equipment after clearing and therefore the potential for mixing refrigerants (see 46) ### Pt. 82, Subpt. F, App. B2 7.4.4.1 Initial Conditions. At the end of the last test for each batch for each refrigerant, the equipment shall be disconnected from the test apparatus (Figure 1). Recycle per 7.5, if appropriate. Perform refrigerant clearing operations as called for in the instruction manual. Capture and record the weight of any refrigerant which would have been emitted to the atmosphere during the clearing process for use in 9.5. If two loops are used for recycling, trapped refrigerant shall be measured for both. 7.4.4.2 Residual Trapped Refrigerant. Evacuate an empty test cylinder to 1.0 kPa absolute. Record the empty weight of the test cylinder. Open all valves to the equipment so as to provide access to all trapped refrigerant. Connect the equipment to the test cylinder and operate valves to recover the residual refrigerant. Record the weight of the test cylinder using a recovery cylinder pressure no less than specified in 6.2.2. Place the test cylinder in liquid nitrogen for a period of 30 minutes or until a vacuum of 1000 microns is reached, whichever occurs first. - 7.5 Recycling Tests (Recovery/Recycle Equipment). - 7.5.1 Recycling Operation. As each recovery cylinder is filled in 7.4.2, recycle according to operating instructions. There will not necessarily be a separate recycling sequence. Note non-condensable purge measurement in 9.5. - 7.5.1.1 Recycle Flow Rate. While recycling the first recovery cylinder for each refrigerant, determine the recycling flow rate by appropriate means (see 9.3) to achieve the accuracy required in 9.4. 7.5.2 Non-Condensable Sample. After completing 7.4.3, prepare a second test batch (7.3). Recover per 7.4.2 until the current recovery cylinder is filled to 80% level by volume. Recycle per 7.5.1. Mark this cylinder and set aside for taking the vapor sample. For equipment having both an internal tank of at least 3 kg refrigerant capacity and an external recovery cylinder, two recovery cylinders shall be marked and set aside. The first is the cylinder described above. The second cylinder is the final recovery cylinder after filling it to 80% level by volume and recycling. 7.5.3 Liquid Sample for Analysis. Repeat steps 7.3, 7.4.2 and 7.5.1 with further test batches until indication means in 4.2 show the filter/drier(s) need replacing. 7.5.3.1 Multiple Pass. For equipment with a separate recycling circuit (multiple pass), set aside the current cylinder and draw the liquid sample (see 7.4) from the previous cylinder. 7.5.3.2 Single Pass. For equipment with the single pass recycling circuit, draw the liquid sample (see 7.4) from the current cylinder. 7.6 Measuring Refrigerant Loss. Refrigerant loss due to non-condensables shall be deter- mined by appropriate means (see 9.5.1). The loss could occur in 7.4.1, 7.4.2 and 7.5.1. Section 8. Sampling and Chemical Analysis Methods - 8.1 Chemical Analysis. Chemical analysis methods shall be specified in appropriate standards such as ARI 700–95 and Appendix C to ARI Standard 700–95. - $8.2 \ \ Refrigerant \ Sampling.$ - 8.2.1 Water Content. The water content in refrigerant shall be measured by the Karl Fischer Analytical Method or by the Karl Fischer Coulometric techniques. Report the moisture level in parts per million by weight. - 8.2.2 Chloride Ions. Chloride ions shall be measured by turbidity tests. At this time, quantitative results have not been defined. Report chloride content as "pass" or "fail." In the future, when quantitative results are possible, report chloride content as parts per million by weight. - 8.2.3 Acidity. The acidity test uses the titration principle. Report the acidity in parts per million by weight (mg KOH/kg) of sample. - 8.2.4 High Boiling Residue. High boiling residues shall use measurement of the volume of residue after evaporating a standard volume of refrigerant. Using weight measurement and converting to volumetric units is acceptable. Report high boiling residues as percent by volume. - 8.2.5 Particulates/Solids. The particulates/solids measurement employs visual examination. Report results as "pass" or "fail." - 8.2.6 Non-condensables. The level of contamination by non-condensable gases in the base refrigerant being recycled shall be determined by gas chromatography. Report results as percent by volume. Section 9. Performance Calculation and Rating - 9.1 Vapor Refrigerant Recovery Rate. This rate shall be measured by weight change of the mixing chamber divided by elapsed time (see 7.4.1.2). The units shall be kg/min and the accuracy shall be per 9.4. - 9.1.1 High Temperature Vapor Recovery Rate. - 9.2 Liquid Refrigerant Recovery Rate. This rate shall be measured by
weight change of the mixing chamber divided by elapsed time (see 7.4.1.3). The units shall be kg/min and the accuracy shall be per 9.4. - 9.3 Recycle Flow Rate. The recycle flow rate shall be as defined in 3.10, expressed in kg/min, and the accuracy shall be per 9.4. - 9.3.1 For equipment using multi-pass recycling or a separate sequence, the recycle rate shall be determined by dividing the net weight W of the refrigerant to be recycled by the actual time T required to recycle. Any set-up or operator interruptions shall not be included in the time T. - 9.3.2 If no separate recycling sequence is used, the recycle rate shall be the higher of the vapor refrigerant recovery rate or the liquid refrigerant recovery rate. The recycle rate shall match a process which leads to contaminant levels in 9.9. Specifically, a recovery rate determined from bypassing a contaminant removal device cannot be used as a recycle rate when the contaminant levels in 9.9 are determined by passing the refrigerant through the contaminant removal device. - 9.4 Accuracy of Flow Rates. The accuracy of test measurements in 9.1, 9.2 and 9.3 shall be ± 008 kg/min or flow rates up to .42 kg/min and $\pm 2.0\%$ for flow rates larger than .42 kg/min. Ratings shall be expressed to the nearest .02 kg/min. - 9.5 Refrigerant Loss. This calculation will be based upon the net loss of refrigerant which would have been eliminated in the non-condensable purge process (see 7.5.1), the oil draining process (see 7.4.2.1) and the refrigerant clearing process (see 7.4.4.1), all divided by the net refrigerant content of the test batches. The refrigerant loss shall not exceed 3% by weight. - 9.5.1 Non-Condensable Purge. Evacuate an empty container to 2 kPa absolute. Record the empty weight of the container. Place the container in a dry ice bath. Connect the equipment purge connection to the container and operate purge according to operating instructions so as to capture the noncondensables and lost refrigerant. Weigh the cylinder after the recycling is complete. Equivalent means are permissible. - 9.5.2 *Oil Draining*. Refrigerant removed from the oil after draining shall be collected and measured in accordance with 7.4.2.1. - 9.5.3 *Clearing Unit.* Refrigerant captured during the clearing process shall be measured in accordance with 7.4.4.1. - 9.6 Final Recovery Vacuum. The final recovery vacuum shall be the mixing chamber pressure in 7.4.3 expressed in kPa. The accuracy of the measurement shall be within 0.33 - 9.7 Residual Trapped Refrigerant. The amount of residual trapped refrigerant shall be the final weight minus the initial weight of the test cylinder in 7.4.4.2, expressed in kg. The accuracy shall be ± 0.02 kg and reported to the nearest 0.05 kg. - 9.8 Quantity Recycled. The amount of refrigerant processed before changing filters (see 7.5.3) shall be expressed in kg to an accuracy of $\pm 1\%$. - 9.9 Contaminant Levels. The contaminant levels remaining after testing shall be published as follows: Moisture content, ppm by weight Chloride ions, pass/fail Acidity, ppm by weight High boiling residue, % (by volume) Particulates-solid, pass/fail (visual examination) Non-condensables, % (by volume) 9.10 Minimum Data Requirements for Published Ratings. Published ratings shall include all of the parameters as shown in Tables 2 and 3 for each refrigerant designated by the manufacturer. #### Section 10. Tolerances 10.1 *Tolerances*. Performance related parameters shall not be less favorable than the published ratings. ### Section 11. Marking and Nameplate Data 11.1 Marking and Nameplate Data. The nameplate shall display the manufacturer's name, model designation, type of equipment, designated refrigerants, capacities and electrical characteristics where applicable. The nameplate shall also conform to the labeling requirements established for certified recycling and recovery equipment established at 40 CFR 82.158(h). Recommended nameplate voltages for 60 Hertz systems shall include one or more of the utilization voltages shown in Table 1 of ARI Standard 110-90. Recommended nameplate voltages for 50 Hertz systems shall include one or more of the utilization voltages shown in Table 1 of IEC Standard Publication 38, IEC Standard Voltages. - 11.2 Data for Designated Refrigerants. For each refrigerant designated, the manufacturer shall include all the following that are applicable per Table 2: - a. Liquid Recovery Rate - b. Vapor Recovery Rate - c. High Temperature Vapor Recovery Rate - d. Final Recovery Vacuum - e. Recycle Flow Rate - f. Residual Trapped Refrigerant - g. Quantity Recycled TABLE 2—PERFORMANCE | Parameter/Type of equipment | Recovery | Recovery/
Recycle | Recycle | System
dependent
equipment | |----------------------------------|----------|----------------------|---------|----------------------------------| | Liquid Refrigerant Recovery Rate | (1) | (¹) | N/A | N/A | | Vapor Refrigerant Recovery Rate | (1) | (1) | N/A | N/A | | High Temp. Vapor Recovery Rate | (1) | (1) | N/A | N/A | | Final Recovery Vacuum | (×) | (×) | N/A | (×) | | Recycle Flow Rate | N/A | (×) | (×) | N/A | | Refrigerant Loss | (3) | (x) | (×) | (3) | TABLE 2—PERFORMANCE—Continued | Parameter/Type of equipment | Recovery | Recovery/
Recycle | Recycle | System dependent equipment | |---|----------|----------------------|---------|----------------------------| | Residual Trapped Refrigerant Quantity Recycled | (²) | (2) | (2) | (²) | | | N/A | (X) | (X) | N/A | NOTE: For recovery equipment, these parameters are optional. If not rated use N/A, "not applicable." TABLE 3—CONTAMINANTS | Contaminant/Type of equipment | Recovery | Recovery/
Recycle | Recycle | System
dependent
equipment | |---|---|---|--|----------------------------------| | Moisture Content Chloride Ions Acidity High Boiling Residue Particulates Non-Condensables | (*)
(*)
(*)
(*)
(*)
(*)
(*) | (x)
(x)
(x)
(x)
(x)
(x)
(x) | (X)
(X)
(X)
(X)
(X)
(X) | N/A
N/A
N/A
N/A
N/A | For recovery equipment, these parameters are optional. If not rated, use N/A, "not applicable." #### ATTACHMENT 1 TO APPENDIX B2 TO SUBPART F OF PART 82—REFERENCES Listed here are all standards, handbooks, and other publications essential to the formation and implementation of the standard. All references in this appendix are considered as part of this standard. - ANSI/UL Standard 1963, Refrigerant Recovery/Recycling Equipment, First Edition, 1989, American National Standards Institute/ Underwriters Laboratories, Inc. - ARI Standard 110-90, Air-Conditioning and Refrigerating Equipment Nameplate Voltages, Air-Conditioning and Refrigeration Institute - ARI Standard 700-95, Specifications for Fluorocarbon and Other Refrigerants, Air-Conditioning and Refrigeration Institute - ASHRAE Terminology of Heating, Ventilation, Air Conditioning, Refrigeration, & Refrigeration, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1991 - IEC Standard Publication 38, IEC Standard Voltages, International Electrotechnical Commission, 1983 ATTACHMENT 2 TO APPENDIX B2 TO SUBPART F OF PART 82-PARTICULATE USED IN STANDARD Contaminated Refrigerant Sample ### 1. Particulate Specification B1.1 The particulate material (pm) will be a blend of 50% coarse air cleaner dust as received, and 50% retained on a 200-mesh screen. The coarse air cleaner dust is available from: AC Spark Plug Division; General Motors Corporation; Flint, Michigan. B1.2 Preparation of Particulate Materials. To prepare the blend of contaminant, first wet screen a quantity of coarse air cleaner dust on a 200-mesh screen (particle retention 74 pm). This is done by placing a portion of the dust on a 200-mesh screen and running water through the screen while stirring the dust with the fingers. The fine contaminant particles passing through the screen are discarded. The +200-mesh particles collected on the screen are removed and dried for one hour at 110 °C. The blend of standard contaminant is prepared by mixing 50% by weight of coarse air cleaner dust as received (after drying for one hour at 110 °C) with 50% by weight of the +200 mesh screened dust. ### B1.3 Particle Size Analysis. The coarse air cleaner dust as received and the blend used as the standard contaminant have the following approximate particle size analysis: Wt. % in various size ranges, pm. | Size range | As received | Blend | |------------|-------------|-------| | 0–5 | | ε | | 5–10 | 12 | 6 | | 10–20 | 14 | 7 | | 20-40 | 23 | 11 | | 40-80 | 30 | 32 | | 80–200 | 9 | 38 | [68 FR 43815, July 24, 2003; 68 FR 54678, Sept. 18, 2003] ^{*} Mandatory rating. ¹ For a recovery or recovery/recycle unit, one must rate either liquid refrigerant recovery rate or vapor refrigerant recovery rate or one can rate for both. If rating only the one, the other shall be indicated by N/A, "not applicable." ² Mandatory rating for equipment tested for multiple refrigerants. ³ Mandatory rating if multiple refrigerants, oil separation or non-condensable purge are rated. APPENDIX C TO SUBPART F OF PART 82— METHOD FOR TESTING RECOVERY DE-VICES FOR USE WITH SMALL APPLI-ANCES Recovery Efficiency Test Procedure for Refrigerant Recovery Equipment Used on Small Appliances The following test procedure is utilized to evaluate the efficiency of equipment designed to recover ozone depleting refrigerants (or any substitute refrigerant subject to the recycling rules promulgated pursuant to section 608 of the Clean Air Act Amendments of 1990) from small appliances when service of those appliances requires entry into the sealed refrigeration system or when those appliances are destined for disposal. This procedure is
designed to calculate on a weight or mass basis the percentage of a known charge of CFC-12 refrigerant removed and captured from a test stand refrigeration system. Captured refrigerant is that refrigerant delivered to a container suitable for shipment to a refrigerant reclaimer plus any refrigerant remaining in the recovery system in a manner that it will be transferred to a shipping container after additional recovery operations. The test stand refrigeration system re- The test stand refrigeration system required for this procedure is constructed with standard equipment utilized in currently produced household refrigerator and freezer products. The procedure also accounts for compressor oils that might be added to or removed from the test stand compressor or any compressor used in the recovery system. ### I. TEST STAND Test stands are constructed in accordance with the following standards. - 1. Evaporator— $\frac{5}{16}$ in. outside dia. with 30 cu. in. volume. - 2. Condenser—¼ in. outside dia. with 20 cu. in volume. - 3. Suction line capillary heat exchanger—appropriate for compressor used. - 4. An 800-950 Btu/hr high side case (rotary) compressor; or (depending on the test senario); - 5. An 800-9500 Btu/hr low side case (reciprocating) compressor. A person seeking to have its recovery system certified shall specify the compressors by manufacturer and model that are to be used in test stands constructed for evaluation of its equipment, and the type and quantity of compressor to be used in those compressors. Only a compressor oil approved for use by the compressor's manufacturer may be specified, and the quantity of compressor oil specified shall be an appropriate quantity for the type of oil and compressor to be used. In order to reduce the cost of testing, the person seeking certification of its recovery system may supply an EPA approved third party testing laboratory with test stands meeting these standards for use in evaluating its recovery system. #### II. TEST CONDITIONS Tests are to be conducted at 75 degrees F, plus or minus 2 degrees F (23.9 C ± 1.1 C). Separate tests are conducted on both high side case compressor stands and low side case compressor stands. Separate tests are also conducted with the test stand compressor running during the recovery operation, and without the test stand compressor running during the recovery operation, to calculate the system's recovery efficiency under either condition. These tests are to be performed using a representative model of all equipment used in the recovery system to deliver recovered refrigerant to a container suitable for shipment to a refrigerant reclaimer. The test stands are to be equipped with access valves permanently installed as specific by the recovery system's vendor to represent the valves used with that system in actual field operations. A series of five (5) recovery operations are to be performed for each compressor scenario and a recovery efficiency is calculated based on the total quantity of refrigerant captured during all five (5) recoveries. Alternatively, at the request of the recovery system's vendor, a recovery efficiency is to be calculated for each recovery event. In this case, a statistically significant number of recovery operations are to be performed. Determination of what is a statistically significant number of recoveries is to be calculated as set out below. These individual recovery efficiencies are then averaged. There are four (4) compressor scenarios to be tested. These are a high side case compressor in working condition; a high side case compressor in nonworking condition; a low side case compressor in working condition; and a low side case compressor in nonworking condition. Recovery efficiencies calculated for the two working compressor scenarios are to be averaged to report a working compressor performance. The two nonworking compressor efficiencies are also to be averaged to report a nonworking compressor performance. If large scale equipment is required in the system to deliver recovered refrigerant to a refrigerant reclaimer (eg. carbon desorption equipment) and it is not possible to have that equipment evaluated under the procedure, the system's vendor shall obtain engineering data on the performance of that large scale equipment that will reasonably demonstrate the percentage refrigerant lost when processed by that equipment. That data will be supplied to any person required to evaluate the performance of those systems. The following procedure will also be modified as needed to determine the weight ### Pt. 82, Subpt. F, App. C of refrigerant recovered from a test stand and delivered to a container for shipment to the large process equipment for further processing. The percentage loss documented to occur during processing is then to be applied to the recovery efficiencies calculated in this modified procedure to determine the overall capture efficiency for the entire system. The following are definitions of symbols used in the test procedure. Test Stand: TSO" means an original test stand weight. TSO" "TSC" means a charged test stand weight. Shipping Containers: 'SCO" means the original or empty weight of shipping container(s). "SCF" means the final or full weight of shipping container(s). Recover/Transfer System: "RSO" means the original weight of a recovery/transfer system. "RSF" means the final weight of a recovery/transfer system. "OL" means the net amount of oil added/ removed from the recovery device and/or transfer device between the beginning and end of the test for one compressor scenario. Weighing steps are conducted with precision and accuracy of plus or minus 1.0 gram. ### III. TEST PROCEDURE - 1. Evacuate the test stand to 20 microns vacuum (pressure measured at a vacuum pump) for 12 hours. - Weigh the test stand (TSO). - 3. If this is the first recovery operation being performed for a compressor scenario (or if a recovery efficiency is to be calculated for each recovery event), then weigh all devices used in the recovery system to deliver recovered refrigerant to a container suitable for shipment or delivery to a refrigerant reclaimer. Weigh only devices that can retain refrigerant in a manner that it will ultimately be transferred to a shipping container without significant release to the atmosphere (RSO). - 4. Weigh final shipping containers (SCO). - 5. Charge the test stand with an appropriate CFC-12 charge (either 6 oz. or 9 oz.). - 6. Run the test stand for four (4) hours with 100% run time. ### 40 CFR Ch. I (7-1-07 Edition) - 7. Turn off the test stand for twelve (12) hours. During this period evaporate all condensation that has collected on the test stand during step 6. - 8. Weigh the test stand (TSC). - 9. Recover CFC-12 from the test stand and perform all operations needed to transfer the recovered refrigerant to one of the shipping containers weighed in step 4. All recovery and transfer operations are to be performed in accordance with the operating instructions provided by the system's vendor. The compressor in the test stand is to remain "off" or be turned "on" during the recovery operation depending on whether the test is for a nonworking or working compressor performance evaluation. If a recovery efficiency is to be calculated for each recovery event, transfer the captured refrigerant to a shipping container and then skip to step 13. Otherwise continue. If the system allows for multiple recovery operations to be performed before transferring recovered refrigerant to a shipping container, the transfer operation can be delayed until either the maximum number of recovery operations allowed before a transfer is required have been performed, or the last of the five (5) recovery operations has been performed. - 10. Perform any oil removal or oil addition operations needed to properly maintain the test stand and the devices used for recovery or transfer operations. Determine the net weight of the oil added or removed from the recovery device and/or transfer device. (OP1 for oil added, OP2 for oil removed). - 11. Evacuate the test stand to 20 microns vacuum for 4 hours. - 12. Return to step 2 unless five (5) recovery operations have been performed. - 13. Weigh all final shipping containers that received recovered refrigerant (SCF). - 14. Weigh the equipment weighed in step three (3) above (RSF). If a recovery efficiency is to be calculated for each recovery event, perform calculations and return to step one (1) for additional recoveries. ### IV. CALCULATIONS ### A. For Five (5) Consecutive Recoveries Refrigerant Recoverable equals the summation of charged test stand weights minus original test stand weights. Refrigerant Recoverable = $$\sum_{i=1}^{5} (TSC_i - TSO_i)$$ ### Pt. 82, Subpt. F, App. C ### **Environmental Protection Agency** Oil Loss equals the net weight of oil added to and removed from the recovery device and/or transfer device. $$OL = \sum_{i=1}^{5} (OP1_i - OP2_i)$$ Refrigerant Recovered equals the final weight of shipping containers minus the initial weight of final shipping containers, plus final recovery system weight, minus original recovery system weight, plus the net value of all additions and removals of oil from the recovery and transfer devices. Refrigerant Recovered = $$\left(\sum_{i=1}^{n} SCF_{i} - SCO_{i}\right) + RSF - RSO - OL$$ n=number of shipping containers used. Recovery Efficiency equals Refrigerant Recovered divided by Refrigerant Recoverable times 100%. Recovery Efficiency = $$\frac{\text{Refrigerant Recovered}}{\text{Refrigerant Recoverable}}$$ 100% $B.\ For\ Individual\ Recoveries$ Refrigerant Recoverable equals the charged test stand weight minus the original test stand weight. ### Refrigerant Recoverable = TSCO - TSO Refrigerant Recovered equals the final weight of the shipping container minus the initial weight of the shipping container plus the final weight of the recovery system minus the original recovery system weight. Refrigerant Recovered =
SCF - SCO + RSF - RSO Recovery Efficiency equals Refrigerant Recovered divided by Refrigerant Recoverable times 100 percent. ### Pt. 82, Subpt. F, App. D Recovery Efficiency = $$\frac{\text{Refrigerant Recovered}}{\text{Refrigerant Recoverable}}$$ 100% C. Calculation of a Statistically Significant Number of Recoveries $$N_{add} = ((t*sd)/(.10*X))^2 - N$$ Where: N_{add} =the number of additional samples required to achieve 90% confidence. sd=Standard deviation, or $(X/(N-1)^5)$ X=Sample average N=Number of samples tested | Number of samples | t for 90%
confidence | |-------------------|-------------------------| | 2 | 6.814 | | 3 | 2.920 | | 4 | 2.353 | | 5 | 2.132 | | 6 | 2.015 | | 7 | 1.943 | | 8 | 1.895 | | 9 | 1.860 | | 10 | 1.833 | | | | ### Procedure: - 1. Compute N_{add} after completing two recoveries. - 2. If N_{add}>0, then run an additional test. - 3. Re-compute $N_{add}.$ Continue to test additional samples until $N_{add} < 0.$ # V. TEST PROCEDURE APPROVAL AND CERTIFICATION Each vendor of capture equipment for small appliances desiring certification will provide a representative model of its capture system and its recommended recovery procedures to an EPA approved third party laboratory for testing in accordance with this procedure. The third party laboratory will certify recovery systems that when tested in accordance with this procedure demonstrate a sufficient recovery efficiency to meet EPA regulatory requirements. APPENDIX D TO SUBPART F OF PART 82— STANDARDS FOR BECOMING A CERTI-FYING PROGRAM FOR TECHNICIANS Standards for Certifying Programs ### a. Test Preparation Certification for Type II, Type III and Universal technicians will be dependent upon passage of a closed-book, proctored test, ad- ministered in a secure environment, by an EPA-approved certifying program. Certification for Type I technicians will be dependent upon passage of an EPA-approved test, provided by an EPA-approved certifying program. Organizations providing Type I certification only, may chose either an on-site format, or a mail-in format, similar to what is permitted under the MVACs program. Each certifying program must assemble tests by choosing a prescribed subset from the EPA test bank. EPA expects to have a test bank with a minimum of 500 questions, which will enable the certifying program to generate multiple tests in order to discourage cheating. Each test must include 25 questions drawn from Group 1 and 25 questions drawn from each relevant technical Group. Tests for Universal technicians will include 100 questions (25 from Group 1 and 25 from each relevant technical Group). Each 50question test represents 10 percent of the total test bank. Questions should be divided in order to sufficiently cover each topic within the Group. Each certifying program must show a method of randomly choosing which questions will be on the tests. Multiple versions of the test must be used during each testing event. Test answer sheets or (for those testing via the computer medium) computer files must include the name and address of the applicant, the name and address of the certifying program, and the date and location at which the test was administered. Training material accompanying mail-in Type I tests must not include sample test questions mimicking the language of the certification test. All mail-in material will be subject to review by EPA. Certifying programs may charge individuals reasonable fees for the administration of the tests. EPA will publish a list of all approved certifying programs periodically, including the fees charged by the programs. This information will be available from the Stratospheric Ozone Protection Hotline. ### b. Proctoring A certifying program for Type II, Type III and Universal technicians must designate or arrange for the designation of at least one proctor registered for each testing event. If more than 50 people are taking tests at the same time at a given site, the certifying organization must adhere to normal testing procedures, by designating at least one additional proctor or monitor for every 50 people taking tests at that site. The certification test for Type II, Type III and Universal technicians is a closed-book exam. The proctors must ensure that the applicants for certification do not use any notes or training materials during testing. Desks or work space must be placed in a way that discourages cheating. The space and physical facilities are to be conducive to continuous surveillance by the proctors and monitors during testing. The proctor may not receive any benefit from the outcome of the testing other than a fee for proctoring. Proctors cannot know in advance which questions are on the tests they are proctoring. Proctors are required to verify the identity of individuals taking the test by examining photo identification. Acceptable forms of identification include but are not limited to drivers' licenses, government identification cards, passports, and military identification. Certifying programs for Type I technicians using the mail-in format, must take sufficient measures at the test site to ensure that tests are completed honestly by each technician. Each test for Type I certification must provide a means of verifying the identification of the individual taking the test. Acceptable forms of identification include but are not limited to drivers' licenses numbers, social security numbers, and passport numbers ### c. Test Security A certifying program must demonstrate the ability to ensure the confidentiality and security of the test questions and answer keys through strict accountability procedures. An organization interested in developing a technician certification program will be required to describe these test security procedures to EPA. After the completion of a test, proctors must collect all test forms, answer sheets, scratch paper and notes. These items are to be placed in a sealed envelope. ### d. Test Content All technician certification tests will include 25 questions from Group I. Group I will ask questions in the following areas: I. Environmental impact of CFCs and HCFCs II. Laws and regulations III. Changing industry outlook Type I, Type II and Type III certification tests will include 25 questions from Group II. Group II will ask questions covering sectorspecific issues in the following areas: IV. Leak detection V. Recovery Techniques VI. Safety VII. Shipping VII. Disposal Universal Certification will include 75 questions from Group II, with 25 from each of the three sector-specific areas. #### e. Grading Tests must be graded objectively. Certifying programs must inform the applicant of their test results no later than 30 days from the date of the test. Type I certifying programs using the mail-in format, must notify the applicants of their test results no later than 30 days from the date the certifying programs received the completed test and any required documentation. Certifying programs may mail or hand deliver the results. The passing score for the closed-book Type I, Type II, Type III and Universal certification test is 70 percent. For Type I certification tests using the mail-in format, passing score is 84 percent. ### f. Proof of Certification Certifying programs must issue a standard wallet-sized identification card no later than 30 days from the date of the test. Type I certifying programs using mail-in formats must issue cards to certified technicians no later than 30 days from the date the certifying program receives the completed test and any required documentation. Each wallet-sized identification card must include, at a minimum, the name of the certifying program including the date the certifying program received EPA approval, the name of the person certified, the type of certification, a unique number for the certified person and the following text: [name of person] has been certified as [Type I, Type II, Type III and/or Universal—as appropriate] technician as required by 40 CFR part 82, subpart F. #### g. Recordkeeping and Reporting Requirements - 1. Certifying programs must maintain records that include, but are not limited to, the names and addresses of all individuals taking the tests, the scores of all certification tests administered, and the dates and locations of all testing administered. - 2. EPA must receive an activity report from all approved certifying programs by every January 30 and June 30, the first to be submitted following the first full six-month period for which the program has been approved by EPA. This report will include the pass/fail rate and testing schedules. This will allow the Agency to determine the relative progress and success of these programs. If ### §82.170 the certifying program believes a test bank question needs to be modified, information about that question should also be included. - 3. Approved certifying programs will receive a letter of approval from EPA. Each testing center must display a copy of that letter at their place of business. - 4. Approved technician certification programs that voluntarily plan to stop providing the certification test must forward all records required by this appendix, §§ 82.161, and 82.166 to another program currently approved by EPA in accordance with this appendix and with §82.161. Approved technician certification programs that receive records of certified technicians from a program that no longer offers the certification test must inform EPA in writing at the address listed in §82.160 within 30 days of receiving these records. The notification notice must include the name and address of the program to which the records have been transferred. If another currently approved program willing to accept the records cannot be located, these records must be submitted to EPA at the address listed at §82.160. - 5. Technician certification programs that have had their certification revoked in accordance with §82.169 must forward all records required by this
appendix, §§82.161, and 82.166 to EPA at the address listed in §82.160. ### h. Additional Requirements EPA will periodically inspect testing sites to ensure compliance with EPA regulations. If testing center discrepancies are found, they must be corrected within a specified time period. If discrepancies are not corrected, EPA may suspend or revoke the certifying programs's approval. The inspections will include but are not limited to a review of the certifying programs' provisions for test security, the availability of space and facilities to conduct the administrative requirements and ensure the security of the tests, the availability of adequate testing facilities and spacing of the applicants during testing, a review of the proper procedures regarding accountability, and that there is no evidence of misconduct on the part of the certifying programs, their representatives and proctors, or the applicants for certification. If the certifying programs offer training or provide review materials to the applicants, these endeavors are to be considered completely separate from the administration of the certification test. ### i. Approval Process EPA anticipates receiving a large number of applications from organizations seeking to become certifying programs. In order to certify as many technicians as possible in a reasonable amount of time, EPA will give priority to national programs. Below are the guidelines EPA will use: First: Certifying programs providing at least 25 testing centers with a minimum of one site in at least 8 different states will be considered. Second: Certifying programs forming regional networks with a minimum of 10 testing centers will be considered. Third: Certifying programs providing testing centers in geographically isolated areas not sufficiently covered by the national or regional programs will be considered. Fourth: All other programs applying for EPA approval will be considered. Sample application forms may be obtained by contacting the Stratopheric Ozone Hotline at 1-800-296-1996. #### i. Grandfathering EPA will grandfather technicians who successfully completed voluntary programs whose operators seek and receive EPA approval to grandfather these technicians, in accordance with §82.161(g). As part of this process, these certifying programs may be required to send EPA-approved supplementary information to ensure the level of the technicians' knowledge. Technicians will be required to read this supplementary information as a condition of certification. The certifying programs will also issue new identification cards meeting the requirements specified above. ### k. Sample Application EPA has provided a sample application. The Agency designed the application to demonstrate the information certifying programs must provide to EPA. Programs are not required to use this form or this format. [58 FR 28712, May 14, 1993, as amended at 59 FR 42960, 42962, Aug. 19, 1994; 59 FR 55927, Nov. 9, 1994; 68 FR 54678, Sept. 18, 2003] # Subpart G—Significant New Alternatives Policy Program SOURCE: 59 FR 13147, Mar. 18, 1994, unless otherwise noted. ### §82.170 Purpose and scope. (a) The purpose of these regulations in this subpart is to implement section 612 of the Clean Air Act, as amended, regarding the safe alternatives policy on the acceptability of substitutes for ozone-depleting compounds. This program will henceforth be referred to as the "Significant New Alternatives Policy" (SNAP) program. The objectives